Knurled Thumb Screws GN 464.1 - m8 thumb bolt
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.
Chun, Yon-Do, Jiheon Lee, Jiyoung Lee, and Junho Suh. 2023. "Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing" Lubricants 11, no. 1: 3. https://doi.org/10.3390/lubricants11010003
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.
Chun, Y. -D., Lee, J., Lee, J., & Suh, J. (2023). Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing. Lubricants, 11(1), 3. https://doi.org/10.3390/lubricants11010003
Chun Y-D, Lee J, Lee J, Suh J. Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing. Lubricants. 2023; 11(1):3. https://doi.org/10.3390/lubricants11010003
Chun, Yon-Do, Jiheon Lee, Jiyoung Lee, and Junho Suh. 2023. "Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing" Lubricants 11, no. 1: 3. https://doi.org/10.3390/lubricants11010003
Chun, Y.-D.; Lee, J.; Lee, J.; Suh, J. Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing. Lubricants 2023, 11, 3. https://doi.org/10.3390/lubricants11010003
Chun, Y.-D.; Lee, J.; Lee, J.; Suh, J. Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing. Lubricants 2023, 11, 3. https://doi.org/10.3390/lubricants11010003
Chun Y-D, Lee J, Lee J, Suh J. Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing. Lubricants. 2023; 11(1):3. https://doi.org/10.3390/lubricants11010003
Chun, Y. -D., Lee, J., Lee, J., & Suh, J. (2023). Thermal Preload for Predicting Performance Change Due to Pad Thermal Deformation of Tilting Pad Journal Bearing. Lubricants, 11(1), 3. https://doi.org/10.3390/lubricants11010003
All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess.
Abstract: Thermal deformation of journal bearings operating under high-temperature conditions can have a significant effect on changes in bearing performance. However, no attempt has been made to quantify this amount of thermal deformation and link it to the performance change of the bearing. The aim of this study is to investigate the quantitative performance change due to thermal deformation of the tilting pad journal bearing (TPJB) pad in terms of the change in preload amount. The variable viscosity Reynolds equation and the energy equation were coupled using the relationship between viscosity and temperature, and the solution was obtained using the finite element method. Heat transfer between the spinning journal, oil film and pads is considered, and a three-dimensional (3D) finite element (FE) model was used to calculate the thermal deformation of the bearing structure. The steady state of the rotor-bearing system was predicted using a bearing performance prediction algorithm with three closed loops. State variables for this steady-state prediction include the amount of thermal deformation of the structure. In order to investigate the amount of thermal deformation of the bearing pad in terms of bearing performance, the concepts of thermal offset preload and thermal performance preload were suggested and the change in thermal preload under various conditions was investigated. Keywords: tilting pad journal bearings; thermal preload; thermal deformation; dynamic performance; static performance